翻訳と辞書 |
Loewner order : ウィキペディア英語版 | Loewner order In mathematics, Loewner order is the partial order defined by the convex cone of positive semi-definite matrices. This order is usually employed to generalize the definitions of monotone and concave/convex scalar functions to monotone and concave/convex Hermitian valued functions. These functions arise naturally in matrix and operator theory and have applications in many areas of physics and engineering. == Definition == Let ''A'' and ''B'' be two Hermitian matrices of order ''n''. We say that ''A ≥ B'' if ''A'' − ''B'' is positive semi-definite. Similarly, we say that ''A > B'' if ''A'' − ''B'' is positive definite.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Loewner order」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|